Neutrino Factory Physics Reach

- By measurement of wrong-sign muon appearance from initial v_e beam, stored-muon-beam Neutrino Factory can shed unique light on
 - lepton mixing
 - CP violation
 - baryogenesis

MUCOOL R&D Efforts

5T cooling-channel solenoid (LBNL) Open-cell NCRF cavity operated at Lab G (FNAL)

High-gradient RF tests in high magnetic field (FNAL)

Be windows for RF Cavities (LBNL)

Bolometer detectors for beam-profile measurements (U. Chicago)

LH₂ absorber (KEK) to be tested at FNAL

Thin absorber windows tested with new technique (ICAR)

Illinois Consortium for Accelerator Research

• 5-university consortium, founded 1999, led by IIT D. M. Kaplan (IIT), PI; T. I. Morrison (IIT), PD

MUCOOL Test Facility

- Need facility in which to test
 - absorbers
 - RF cavities
 - solenoids
- Show cooling cell operable in intense beam (engineering test, not cooling demo)
- \exists convenient location: end of Linac has
 - space
 - 201 & 805 MHz RF power sources
 - 400 MeV beam

High-Gradient RF R&D ANL / FNAL / IIT / LBNL / UMiss

High-Gradient-RF-Cavity R&D

• U. Cincinatti
Ph.D. student
Vincent Wu
tuning the
prototype 805-MHz
open-cell cavity

• Open-cell 805-MHz prototype cavity in superconducting solenoid in Lab G

• See large dark current at high gradients:

Spark Damage on Inside of Cavity Window

RF R&D Achievements:

 Reached regime of surface electric field (50 MV/m) needed for FS-II cooling channel, with solenoidal magnetic field up to 2.5 T

- Sparking & dark currents require R&D on surface quality and treatment
 - issues common to NLC
- LBL closed-cell-cavity prototype now installed in Lab G for high-power tests
 - RF cells closed by beryllium windows
 - gives 2× lower power requirement & surface field for same accelerating gradient

SimulationBNL / FNAL / IIT / IU / UIUC

MUCOOL Simulations:

- FS-II demonstrated successful high-intensity Neutrino Factory design
- Our current focus:
 - Reduce cost
 - Develop longitudinal cooling (opens door for Muon Colliders)
 - Develop cooling demonstration (MICE)

Projects:

- Bunched-beam phase rotation
- MICE experiment simulation
- Quadrupole-focused cooling channel
- Ring coolers & emittance exchange

Balbekov Ring Cooler

V. Balbekov, R. Raja, Z. Usubov (FNAL)

10

Revolution number

15

0

Bunched-Beam Phase Rotation

(High-frequency muon capture)

D. Neuffer, A. van Ginneken, D. Elvira (FNAL)

Motivation:

Induction Linac requires new technology and is too expensive

• Alternative Scenario:

Use low-cost ≈200 MHz RF for μ capture Requires sequence of RF at several frequencies to trap μ beam into string of 200 MHz bunches

Results:

~0.4 μ/p (each sign) captured for v-factory μ^+ and μ^- bunches obtained simultaneously

Bunched-Beam Phase Rotation - layout

- **Drift (100m)** Allows $\pi \rightarrow \mu$ decay; beam develops $\phi \delta E$ correlation
- Buncher (60m) 300 \rightarrow 200MHz, V' = 0 \rightarrow 4.8 MV/m E₀ = 125±50 MeV set at 15 λ separation; beam forms into string of bunches of different energies
- ϕ - δ E Rotator (~10m) ~200MHz, V' = 10 MV/m Beam rotates by ~1/4 ϕ - δ E oscillations; bunches align to similar energies
- Cooler (100m) ~200MHz
 Transverse cooling to reduce beam size

& performance

• After drift plus adiabatic buncher, beam formed into string of ≈200-MHz bunches

After ≈200-MHz
 RF rotation, beam
 formed into string
 of equal-energy
 bunches matched to
 cooling RF
 acceptance

Absorber R&D

FNAL / IIT / KEK / NIU / Osaka / Oxford / UIUC / UMiss

Forced-Flow Absorber Design

External Heat Exchange:

Mucool ~ (E. Black, IIT)
Establish transverse turbulent flow with
nozzles – complicated, hard to simulate

Absorber Window Design

Cooling channel requires minimum "heating"

- ➤ Minimize scattering → minimize window thickness
- Modified Torispherical Integrated window and flange design

FEA Calculations

Finite Element Analysis

- ➤ Three dimensions necessary for vibrational analysis: on-elastic region included
- Displacement vs. radius under pressure

Time · ∏ 71 secs

Window/flange 3-dim.simulation Stress distribution at the yield point Window/flange cross section

Time: 0.73 secs.

Radius (mm)

NIU photogrammetry results and

FEA calculations

Absorber windows

Flange/window unit machined from aluminum piece

Backplane with connections, and with window attached

Photogrammetry test at NIU

Flow Tests

Three dimensional LH2 absorber flow simulations

